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Abstract

The integral equation formulation for transient radiative transfer in a 3D absorbing and anisotropically scattering
medium is developed. The method developed is applied to transient radiative transfer in 1D planar and 2D

cylindrical linearly anisotropically scattering media exposed to pulse radiation. The integral equations for the two
examples are solved by the quadrature method. The results by the present method agree quite well with those
obtained by the Monte Carlo methods. The e�ects of various parameters are investigated. # 2000 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

More and more studies on transient radiative
transfer in a participating medium exposed to a
laser pulse have appeared recently with the

impetuses from a variety of engineering and clinical
applications, such as atmosphere remote sensing
[1,2], oceanographic lidar [3], thermal (or optical)

tomography [4], photodynamic therapy [5], and esti-
mating radiative properties of participating media
[6,7]. Since transient radiative transfer is governed

by an integro-di�erential equation, which is complex
to solve analytically even in a 1D planar medium,
the studies adopt approximate methods or Monte
Carlo methods to solve the equation of transient

radiative transfer. The Monte Carlo method [8], in
essence, is a stochastic (or statistical) method. It is
¯exible to handle complex geometrical shapes, aniso-

tropic scattering and nonhomogeneous properties,

but the results obtained by the method always have

unavoidable random errors due to practical ®nite

samplings. In contrast, deterministic methods do not

su�er the defect, and so they are sometimes pre-

ferred. Among the popular deterministic methods,

the adding/doubling method is proposed to solve

the transient response of a medium with a unit-step

external source [9]. The parabolic di�use approxi-

mation is applied to evaluating the re¯ected and the

transmitted intensities of a scattering slab with pulse

irradiation [6,10]. Mitra and Kumar [11] consider

light-pulse transport through scattering±absorbing

media, and directly compare the performances of

various approximate methods, including the hyper-

bolic P ÿ 1 and some low order P±N approxi-

mations, the two-¯ux model, and the discrete-

ordinate method. However, these studies are merely

focused on the geometrically simplest case, a 1D

planar medium. On the other hand, only very few

studies are devoted to multi-dimensional transient
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radiative transfer. Very recently, Yamada and Hase-

gawa [12] employ the ®nite element method to solve

the parabolic di�use approximation equation to ana-

lyze the transient radiative transfer in 2D and 3D

cylindrical media with light impulses, while Mitra

and coworkers [13] apply the hyperbolic P ÿ 1 ap-

proximation to the transient radiative transfer within a

2D rectangular medium. To assess the accuracy of the

solutions obtained by the approximate methods, highly

accurate solutions based on exact formulation are

required.

Highly accurate solutions of the integral equation

for time-independent radiative transfer have been

obtained [14,15]. Moreover, Wu [16] has developed

the integral equation of transient radiative transfer

in an isotropically scattering planar medium, and it

is shown that the integral equation can be solved

accurately by a quadrature method (QM). Hence,

the integral equation approach seems to be promis-

ing.

In this work, we ®rst develop the integral equation

formulation for transient radiative transfer in a general
3D anisotropically scattering medium. The formulation
for transient radiative transfer, to the best of our

knowledge, has not been derived yet. Then, the formu-
lation is applied to studying transient radiative transfer
in 1D planar and 2D cylindrical linearly anisotropi-

cally scattering media with pulse irradiation. The QM,
an adaptation of the method proposed in [16], is used
to solve the resulting integral equations. To validate
the solutions, the integral equation results obtained by

the QM are compared with the results solved by the
Monte Carlo methods.

2. General formulation

In an absorbing and scattering medium with con-

stant radiative properties, the radiative intensity I at
position r along direction OOO at time t can be described
by the equation of transient radiative transfer

Nomenclature

an phase function coe�cients
anm coe�cients in the expression of phase

function in terms of spherical har-

monics, see Eq. (8)
c speed of light in the medium
e1, e2, e3 unit vectors in the u1-, u2- and u3-direc-

tions, respectively
er, ec, k unit vectors in the r-, c- and z-direc-

tions, respectively

F function describing the temporal shape
of the pulse, see Eq. (16)

I radiation intensity
Io peak value of the pulse

Mnm, M
�
nm moments of intensity, de®ned in Eq.

(11)
n unit normal vector

N order of the anisotropic scattering
Nj,Nm,Ns quadrature point numbers for the j, m

and s integrations, respectively

q radiative ¯ux
r, c, z cylindrical coordinates, see Fig. 1(b)
r position vector

ro, zo radius and height of the cylindrical
medium, respectively

Dr, Dz, Dt grid sizes in the r-, z- and t-directions,
respectively

s distance measured from position r along
the direction ÿOOO

S source function

t time
tc time when the peak of the pulse enter-

ing the medium

tp full width at half maximum for the tem-
poral shape of F�t�

u1, u2, u3 orthogonal curvilinear coordinates

Greek symbols
b extinction coe�cient

d0m function de®ned in Eq. (9)
z function de®ned in Eq. (25)
y polar angle
L function describing the initial distri-

bution of I
m cosine of y
t optical distance

j azimuthal angle
F phase function
o scattering albedo

O solid angle
OOO unit vector in a direction

Subscripts
u upper limit
w boundary

Superscript
ÿ leaving the medium
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1

c

@I�r, OOO, t�
@ t

� OOO � rI�r, OOO, t� � bI�r, OOO, t� � bS�r, OOO, t�
�1�

where c is the speed of light in the medium, b the

extinction coe�cient, and S the source function de®ned
as

S�r, OOO, t� � o
4p

�
4p
I
ÿ
r, OOO 0, t

�
F�OOO 0 � OOO� dOOO 0, �2�

Here, o is the scattering albedo, F the phase function,
and dO 0 an in®nitesimal solid angle around the incom-

ing direction OOO 0: Here, a cold medium is considered;
that is, the emission of the medium is negligibly small
as compared to the irradiation at the medium bound-

ary. The scattering is instantaneous or of no retention
time [17]. The notation denoting the spectral depen-
dence of the radiative properties has been omitted to

simplify the mathematical formulations, and so Eq. (1)
is valid for monochromatic or gray radiative transfer.
Moreover, the geometrical sizes of the considered med-
ium are assumed to be much larger than wavelength,

the boundary of the medium is non-participating, and
the medium of interest is non-re-entrant. By non-re-
entrant we mean that any radiative energy leaving the

medium surface will not re-enter the medium through
another part of the surface [18].
The required initial and boundary conditions of Eq.

(1) can be expressed as

I�r, OOO, 0� � L�r, OOO� �3�

I�rw, OOO, t� � Iw�rw, OOO, t�, OOO � n > 0, tr0 �4�

where L and Iw are two speci®ed functions with r and
rw denoting locations in the medium and on the

boundary surface, respectively, and n is the unit nor-
mal vector at rw pointing to the medium.
The incident radiation (or the integrated intensity)

can be de®ned as

M00�r, t� �
�
4p
I�r, OOO, t� dO �5�

M00 is a quantity independent of direction and is of
particular interest. An integral expression of M00, in
terms of the source function can be derived [18]. The

expression is an integral equation of M00 if the scatter-
ing is isotropic, and so the expression is useful. How-
ever, in the general case of anisotropic scattering, the

expression represents an identity rather than an
equation which can be solved for M00 [18]. It is found
that the integral expression just mentioned, can be

recast as a set of integral equations which can be
solved for M00 and other moments of intensity by
expanding the phase function in a series of Legendre

Fig. 1. The geometries of the media considered and the coor-

dinate systems; (a) an arbitrary 3D medium; (b) a ®nite

cylindrical medium.
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polynomials. The series expansion of the phase func-
tion in terms of the Legendre polynomials was pro-

posed by Chu and Churchill [19].
Before deriving the set of integral equations for

radiative transfer in an anisotropically scattering med-

ium, the spatial and the directional coordinate systems
are speci®ed. Here, we adopt an orthogonal curvilinear
coordinate system with coordinates labeled with u1, u2
and u3 to describe spatial positions, and the directional
polar axis is aligned with the spatial u3 direction, while
the directional azimuthal angle is the angle between

the tangent of the u1 curve and the projection of OOO in
the u1u2 plane. The spatial and the directional coordi-
nate systems are shown in Fig. 1(a). Then, at position
r, an arbitrary direction OOO can be expressed as

OOO �
n
1ÿ �m�OOO; r��2o1=2cos

�
j�OOO; r��e1�r� � n1

ÿ �m�OOO; r��2o1=2sin
�
j�OOO; r��e2�r�

� m�OOO; r�e3�r� �6�

where e1�r�, e2�r� and e3�r� are unit vectors in the u1-,
u2- and u3-directions, respectively, m�OOO; r��cos�y�OOO; r��,
and y�OOO; r� and j�OOO; r�, are the polar angle and the
azimuthal angle for OOO at position r, respectively. The
explicit expressions of y�OOO; r� and j�OOO; r� are depen-
dent on the coordinate systems used, and can be deter-

mined byn
1ÿ �m�OOO; r��2o1=2cos

�
j�OOO; r�� � OOO � e1�r� �7a�

n
1ÿ �m�OOO; r��2o1=2sin

�
j�OOO; r�� � OOO � e2�r� �7b�

m�OOO; r� � OOO � e3�r� �7c�

With the addition theorem for the Legendre poly-
nomials, the phase function can be expressed in terms

of the spherical harmonics [20]

F�OOO 0 � OOO� �
XN
m�0

XN
n�m
�2ÿ d0m �anmPm

n

�
m�OOO; r��

� Pm
n

�
m
ÿ
OOO 0; r

��
cos
�
m
�
j�OOO; r� ÿ j

ÿ
OOO 0; r

��	 �8�

where anm � an�nÿm�!=�n�m�!, a0 � 1, and d0m is
de®ned as

d0m �
�
1 for m � 0
0 for m 6� 0

�9�

The terms after the Nth one are truncated for the Nth-
degree anisotropic scattering approximation. It is

worthy of mentioning that the expression of phase
function, Eq. (8), is in terms of the directional coordi-

nate system adopted. If another directional coordinate
system is used, the expression varies.
Substituting Eq. (8) into Eq. (2), we obtain

S�r, OOO, t� � o
4p

XN
m�0

XN
n�m
�2ÿ d0m �anmPm

n

�
m�OOO; r��

� �cos
�
mj�OOO; r��Mnm�r, t�

� sin
�
mj�OOO; r��M�nm�r, t�	 �10�

where the moments of intensity are de®ned as�
Mnm�r, t�
M�nm�r, t�

�
�
�
4p
I�r, OOO, t�Pm

n

�
m�OOO; r��

�
(

cos
�
mj�OOO; r��

sin
�
mj�O; r��

)
dO

�11�

for mRnRN, 0RmRN: Substituting Eq. (10) into the
formal solution of the intensity obtained from the inte-

gration of Eq. (1) [18], we have the formal solution of
I in terms of the moments of intensity

I�r, OOO, t� � L�rÿ ctOOO, OOO�exp
�ÿ t�r, rÿ ctOOO��

�H
ÿ��rÿ rw�r, OOO�

��ÿ ct
�

� Iw

�
rw�r, OOO�, OOO, tÿ

��rÿ rw�r, OOO�
��=c�

� exp
�ÿ t

�
r, rw�r, OOO�

�	
H
ÿ
ctÿ ��rÿ rw�r, OOO�

���
� 1

4p

�jrÿrw�r, OOO�j
0

boexp
�ÿ t�r, rÿ sOOO��

�H�ctÿ s�
XN
m�0

XN
n�m
�2ÿ d0m �anm

� Pm
n

�
m�OOO; rÿ sOOO���cos

�
mj�OOO; rÿ sOOO��

�Mnm�rÿ sOOO, tÿ s=c� � sin
�
mj�OOO; rÿ sOOO��

�M�nm�rÿ sOOO, tÿ s=c�	 ds �12�

where H is the Heaviside step function, t�r, r 0��bjrÿ
r 0j is the optical distance between two points r and r 0,
s is the distance measured from position r along the
direction ÿOOO, and rw represents the nearest point on
the medium boundary surface seen from r in the direc-

tion ÿOOO: Thus, rw is determined by r, OOO, and the geo-
metry of the medium boundary surface.
Substituting Eq. (12) into Eq. (11), we obtain the
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integral equations of the moments of intensity(
Mnm�r, t�
M�nm�r, t�

)
�
�
4p
L�rÿ ctOOO, OOO�exp

�ÿ t�r,rÿ ctOOO��
�H

ÿ��rÿ rw�r, OOO�
��ÿ ct

�
Pm

n

�
m�OOO; r��

�
(

cos
�
mj�OOO; r��

sin
�
mj�OOO; r��

)
dO

�
�
4p
Iw
�
rw�r, OOO�, OOO, tÿ

��rÿ rw�r, OOO�
��=c�

� exp
�ÿ t

�
r, rw �r, OOO�

�	
�H

ÿ
ctÿ ��rÿ rw�r, OOO�

���Pm
n

�
m�OOO; r��

�
(

cos
�
mj�OOO; r��

sin
�
mj�OOO; r��

)
dO

� 1

4p

�
4p

�jrÿrw�r, OOO�j
0

bo

� exp
�ÿ t�r, rÿ sOOO��

�H�ctÿ s�Pm
n

�
m�OOO; r��

�
(

cos
�
mj�OOO; r��

sin
�
mj�OOO; r��

)

�
XN
j�0

XN
k�j

ÿ
2ÿ d0j

�
akjP

j
k

�
m�OOO; rÿ sOOO��

�
n

cos
�
jj�OOO; rÿ sOOO��

�Mkj�rÿ sOOO, tÿ s=c�
� sin

�
jj�OOO; rÿ sOOO��

�M�kj�rÿ sOOO, tÿ s=c�
o

ds dO

for mRnRN, 0RmRN: Eq. (13) represents a set of
simultaneous integral equations for the moments of
intensity, and forms a complete description of the
radiative transfer of interest, provided that L and Iw
are speci®ed. After the solutions of the moments of
intensity are obtained from Eq. (13), any radiative
physical quantity of interest, such as the source func-

tion or the intensity, can be easily found.
Physically, M11, M11

� and M10 are the u1-, u2- and
u3-components of radiative ¯ux, respectively; that is,

q�r, t� �M11�r, t�e1�r� �M�11�r, t�e2�r� �M10�r, t�e3�r�
�14�

The domains of integration of the integrals on the
right hand side of Eq. (13) may vary with time, and

the moments of intensity at a given instant t depend
on those before t. Thus, the integral equations are Vol-
terra type. This feature is very di�erent from the inte-

gral equations of time-independent radiative transfer,
which are Fredholm type. However, in Eq. (13), if Iw
is independent of time and let t approach in®nity, the

®rst term on the right hand side representing the con-
tribution of the initial condition can be dropped, and

only the second and the third terms standing for
boundary irradiation and scattering contributions, re-
spectively, are left. Then, the resulting expression is

consistent with the formulation for time-independent
radiative transfer in an absorbing and anisotropically
scattering medium [21], provided that the angle integral

(the second term) and the angle-distance integral (the
third term) on the right-hand side of Eq. (13) are
transformed into surface integral form and volume

integral form, respectively.
If the medium considered is isotropically scattering,

the set of integral equations reduces to one integral
equation for M00. The other high-order moments of

intensity can be readily obtained by integration with
the solved M00. Besides, the integral equation of M00,
in essence, corresponds to the Peierls' equation in [18]

for a gray, time-independent-property medium without
internal source, provided that the integral representing
scattering contribution is expressed in volume integral

form.

3. Examples and numerical methods

With the integral equations for anisotropic scattering

derived in Section 2, we are ready to apply the formu-
lation to a problem often encountered in applications.
The problem is the transient radiative transfer in a

®nite cylindrical medium (radius ro and height zo)
exposed to a pulse radiation. The medium is assumed
to be absorbing and linearly anisotropically scattering

�N � 1). The spatial coordinate system is the conven-
tional cylindrical coordinates, as shown in Fig. 1(b).
The angle between the z axis and the direction of radi-

ation propagation is y whereas the directional azi-
muthal angle j is measured from the rz plane, as
shown in Fig. 1(b). We assume that the irradiation is a
spatially uniform pulse normal to the circular bottom

surface at z � 0, and the top and lateral surfaces are
free from irradiation. The boundary irradiation Iw�r, z,
m, j, t� can be expressed as

Iw�r, 0, m, j, t� � IoF�t�d�mÿ 1�d�j�, for

0RrRro, m > 0, 0Rj < 2p, tr0
�15a�

Iw�r, zo, m,j, t� � 0, for

0RrRro, m < 0, 0Rj < 2p, tr0
�15b�
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Iw�ro, z, m, j, t� � 0,

for 0RzRzo, ÿ 1RmR1,

p=2 < j < 3p=2, tr0

�15c�

where d is the delta function, and the function F is
de®ned as

F�t� � exp

"
ÿ 4ln 2

�
tÿ tc
tp

�2
#
� �16�

The temporal shape of the pulse is a truncated Gaus-
sian distribution. In Eq. (16), tc is the time when the
pulse reaches its maximum, and tp presents the full
width at half maximum (FWHM) for the temporal

shape of F�t�: We assume that there is no radiation
energy within the medium initially. Thus, the initial
condition is

I�r, z, m, j, 0� � 0,

for 0RrRro, 0RzRzo, ÿ 1RmR1, 0Rj < 2p
�17�

With the initial and boundary conditions speci®ed
and considering the ®nite speed of radiation propa-
gation, the integral equations of the moments of inten-

sity for the axisymmetric medium can be expressed as8><>:
M00�r, z, t�
M10�r, z, t�
M11�r, z, t�

9>=>; �
IoF�tÿ z=c� exp� ÿ bz�

8><>:
1

1

0

9>=>;H�ctÿ z�

� 1

4p
H�ctÿ z�

�2p
0

�1
ÿ1

�su�r, z, m, j, t�

0

bo

� exp� ÿ bs�

8>><>>:
1

m�
1ÿ m2

�1=2
cos j

9>>=>>;
�
*
M00

�
r 0�r, s, m, j�, z 0�z, s, m�, tÿ s=c

�

� a1

8<:mM10

�
r 0�r, s, m,j�, z 0�z, s, m�, tÿ s=c

�
�
h
r
ÿ
1ÿ m2

�1=2
cos jÿ s

ÿ
1ÿ m2

�i
r 0�r, s, m, j�

�M11

�
r 0�r, s, m, j�, z 0�z, s, m�, tÿ s=c

�9=;
+

ds dm dj

�18�

and M�11 (the c-component of radiative ¯ux) is zero,
since the irradiation on the constant property medium

is axisymmetric. In Eq. (18), we de®ne

r 0�r, s, m, j� �
h
r2 ÿ 2rs

ÿ
1ÿ m2

�1=2
cos j� s2

ÿ
1ÿ m2

�i1=2
�19�

z 0�z, s, m� � zÿ sm �20�

su�r, z, m, j, t� � min
��ctÿ z�=�1ÿ m�, sw�r, z, m, j�

	
�21�

where minfx, yg denotes the smaller value of x and y,
and sw is the distance from the considered point
labeled by r and z to the nearest point on the medium

boundary seen from the considered point reversely
along the direction denoted by m and j: It is readily
found that

sw�r, z, m, j� �8>><>>:
ÿ�zo ÿ z�=m, if ÿ 1Rm < m1�r, z, j�

z�r, j�=
ÿ
1ÿ m2

�1=2
, if m1�r, z, j�RmRm2�r, z, j�

z=m, if m2�r, z, j� < mR1

�22�

with

m1�r, z, j� � ÿcos

(
arctan

"
z�r, j�
�zo ÿ z�

#)
�23�

m2�r, z, j� � cos

�
arctan

�
z�r, j�

z

��
�24�

z�r, j� � rcos j� ÿr2o ÿ r2sin2j
�1=2 �25�

In Eq. (18), the upper limit of integration over s, su, is

a function of r, z, m, j and t. As shown in Eq. (18), su
represents the length determining the domain of depen-
dence of the moments of intensity at the position
denoted by r and z. The domain of dependence may

vary with time and the radiative transfer is con®ned in
the domain due to either the ®nite propagation time or
the ®nite volume of the medium. The derivation of su
is similar to that stated in [16], and so it is not dupli-
cated here.
When the medium is unbounded in the r-direction

�ro approaches in®nity) and the irradiation pulse is uni-
form, Eq. (18) reduces to the equations for a planar
medium. The resulting equations can be expressed as

C.-Y. Wu, S.-H. Wu / Int. J. Heat Mass Transfer 43 (2000) 2009±20202014



(
M00�z, t�
M10�z, t�

)
�IoF�tÿ z=c� exp� ÿ bz�H�ctÿ z�

� 1

2
H�ctÿ z�

�1
ÿ1

�su�z, m, t�

0

bo

� exp� ÿ bs�
(
1

m

)
� �M00�zÿ sm, tÿ s=c�
� a1mM10�zÿ sm, tÿ s=c�	 ds dm

where

su�z, m, t� �8><>:
min

��ctÿ z�=�1ÿ m�, ÿ �zo ÿ z�=m
	
, if ÿ 1Rm < 0

�ctÿ z�=�1ÿ m�, if m � 0

min
��ctÿ z�=�1ÿ m�, z=m	, if 0 < mR1

In the 1D problem, the moments of intensity are inde-

pendent of r, and the r-component of radiative ¯ux,
M11, is zero as well as M�11: Thus, only the two integral
equations of M00 and M10 are required to be solved.
The method adopted to solve the integral equations

of the moments of intensity for the 1D and 2D aniso-
tropic scattering problems is the QM [16], which uses a
product quadrature rule to approximate the angle-dis-

tance integral in Eqs. (18) and (26). This method trans-
forms the integral equations to a system of algebraic
equations and has been successfully used to solve 1D

transient radiative transfer in a planar isotropically
scattering medium. The details of the QM for the 1D
problem can be found in [16], and so only the adap-

tation for the 2D problem is brie¯y described here.
From Eqs. (21) and (22), it is readily found that su

has a non-continuous ®rst-order derivative with respect
to m: In the interest of accuracy, we split the inte-

gration interval of m into subintervals, over which the
®rst-order derivative of su is continuous. Besides, for
accuracy of the evaluation of half-range radiative

¯uxes on the boundaries, the integration interval of j
is split into four subintervals, �0, p=2�, �p=2, p�,
�p, 3p=2�, and �3p=2, 2p�: Then, we adopt the product

Gaussian-Legendre quadrature to evaluate each sub-
integral. In each integral, Nj-, Nm- and Ns-point quad-
rature rules are used for the j, m and s integrations, re-
spectively.

The distributions of the moments of intensity are ap-
proximated by their values at given grid points associ-
ated with interpolation. For simplicity, we use a

uniform grid in the r-, z- and t-directions, where Dr,
Dz and Dt � Dz=c are the grid sizes in the r-, z- and t-
directions, respectively. However, the quadrature

points used to evaluate the angle-distance integrals are
very often not located exactly on the uniform grid
points. The scattering parts of the moments of inten-

sity at the quadrature points are obtained by interp-
olation in terms of those at the grid points neighboring

in space and time. The interpolation procedure for the
2D problem is very similar to that in [16]. Since the
moments of intensity depend on r, z and t for the 2D

problem, interpolation in three-dimension is required.
After the interpolation procedure in the z- and t-direc-
tions is performed, an additional interpolation in the r-

direction needs to be done. While bi-quadratic interp-
olation is adopted for the 1D problem as in [16], tri-
linear interpolation is used here for the 2D problem to

simplify programming. The above procedure trans-
forms the integral equations into a system of algebraic
equations. Solving the system iteratively at each time
step, we can obtain the moments of intensity at the

grid points as stated in [16].
To validate the results obtained by the QM, we also

solve the problems by the Monte Carlo methods. For

the 1D problem, we adopt the conventional Monte
Carlo method (CMCM) [8]. The reverse (or backward)
Monte Carlo method [22,23] (RMCM) provides better

results of the moments of intensity at a speci®ed point
than the CMCM does. Thus, we adapt the RMCM
developed for steady problems to solve the transient

2D problem.

4. Results and discussions

4.1. One-dimensional problem

Transient radiative transfer in a planar isotropically
scattering medium exposed to a collimated pulse radi-
ation has been studied in [16]. The in¯uence of the
scattering albedo and the optical thickness on the tran-

sient radiative transfer has been investigated. Hence, in
this work, we aim at the e�ects of the anisotropic scat-
tering. We consider two values of a1, 1.0 and ÿ1.0, for
planar conservative �o � 1:0� media with the pulse of
cbtc � 1:0 and cbtp � 0:333: The distributions of the
re¯ectivities Mÿ10�0, t�=Io � �IoF�t�H�t� ÿM10�0, t��=Io

and of the transmissivities M10�z, t�=Io for bzo � 5:0
and 0.2 over dimensionless time �cbt� are shown in
Figs. 2 and 3, respectively. The QM results are gener-
ated by using Nm � 12, Ns � 16 and zo=Dz � 80 for

bzo � 5:0, and Nm � 24, Ns � 12 and zo=Dz � 30 for
bzo � 0:2: The combinations of the quadrature points
and the grid sizes have been shown to generate accu-

rate results [16]. The results solved by the CMCM are
also shown in the ®gures to validate the present QM
results. In the computation of the CMCM, a very

large number of bundles, 108, are used for each of the
cases to reduce the statistical errors inherent within the
CMCM results and to ensure the accuracy. From Figs.
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2 and 3, it is found that the results by the QM and
CMCM agree very well for the duration shown.

In Fig. 2, the re¯ectivity for a1 � 1:0 (forward-scat-
tering dominating) has a smaller value than that for
a1 � ÿ1:0 (backward-scattering dominating) around

the peaks of the re¯ectivity curves. This is because, the
radiation scattered once is the dominant contributor of
the re¯ectivity and the strongly backward scattering

makes more radiation be scattered back. Moreover,
when the irradiation pulse penetrates deep into the
medium, the re¯ectivity for a1 � 1:0 becomes larger

than that for a1 � ÿ1:0 for the optically thick case.
More radiation energy for the forward-scattering dom-
inating case can reach the center of the medium than
that for the backward-scattering dominating case can.

After the irradiation pulse passes through the medium,
the scattered radiation energy mainly transfers from
the center of the medium to the boundary surfaces,

and then leaves the medium. The forward scattering
tends to enhance such radiative transfer, and makes
more radiation energy be carried to the boundary.

Therefore, more radiation energy leaves the medium
and results in the larger re¯ectivity of the forward-scat-
tering dominating case. On the other hand, around the

peak instant, the transmissivity for a1 � 1:0 keeps lar-
ger than that for a1 � ÿ1:0: This is because, the for-
ward scattering makes more radiation energy penetrate
through the medium in the direction of the irradiation,

and enhances the radiative transfer from the center to
the boundary at later instants. Next, it is found that
far away from the re¯ectivity and the transmissivity

peak instants, both the re¯ectivity and the transmissiv-
ity for a1 � 1:0 become smaller than those for a1 �

ÿ1:0 for this optically thick case �bzo � 5:0�: Because
more energy has escaped from the medium for the for-

ward-scattering case, less energy is eventually left
within the medium and the re¯ectivity and the trans-
missivity for the case are smaller. Besides, the re¯ectiv-

ity curves eventually merge with the transmissivity
curves for each of the anisotropically scattering cases
as cbt becomes large enough.

In Fig. 3, similar tendency can also be observed
from the results of the optically thin case �bzo � 0:2�:
However, unlike the optically thick case, the values of

the re¯ectivity for a1 � ÿ1:0 for the optically thin case
always keep larger than those for a1 � 1:0 for the dur-
ation shown. This is because, not only the penetration
of radiation through a small optical thickness is very

easy, but also the forward scattering enhances the pen-
etration. Thus, after the irradiation pulse passes, the
radiation energy left within the medium decreases so

quickly that the re¯ectivity for a1 � 1:0 has no chance
to become larger than that for a1 � ÿ1:0: Similar to
the result shown in Fig. 2, Fig. 3 reveals that more

radiative energy remains within the medium for the
backward-scattering dominating case than that for the
forward-scattering dominating case does for large cbt:

4.2. Two-dimensional problem

Here, the QM is adopted to predict the transient
radiative transfer within 2D ®nite cylindrical scattering
media; isotropic as well as anisotropic scattering is
considered. The irradiation pulse is characterized by

cbtc � 1:0 and cbtp � 0:333: The convergence of the
QM is examined ®rst. Conceptually, the ®ner meshes

Fig. 3. The results of the re¯ectivities and the transmissivities

obtained by the QM and CMCM for 1D planar linearly ani-

sotropically scattering media of bzo � 0:2:

Fig. 2. The results of the re¯ectivities and the transmissivities

obtained by the QM and CMCM for 1D planar linearly ani-

sotropically scattering media of bzo � 5:0:
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and the higher order quadrature rules yield the more
accurate results. To check the in¯uence of the number

of the grid points, in Fig. 4 we plot the QM results
generated by using 11 � 11, 21 � 21, 31 � 31 and 41 �
41 grid points with Nj � Nm � 10 and Ns � 40, re-

spectively, for a conservative medium of bro � bzo �
1:0: We choose the half-range radiative ¯ux Mÿ10�0, 0,
t� � IoF�t�H�t� ÿM10�0, 0, t� as the exempli®ed results

since it is the result of scattered radiation. From Fig.
4, it is found that the results obtained by using the
fewer grid points almost coincide with the 41� 41 grid

point results, except around the peak of Mÿ10�0,0,t�:
Thus, for the moderate optical size medium we ®nd
that the 21 � 21 mesh can provide converged results.
However, with a further examination, we ®nd that the

larger optical size is, the more grid points are required
to provide converged results. In addition, to investigate
the dependence of the QM results on the quadrature

points, the Mÿ10�0, 0, t� results obtained by using var-
ious order quadrature rules are plotted in Fig. 5. Here,
we consider four sets of Nj � Nm and Ns: As shown in

Fig. 5, only the results of Nj � Nm � 3 and Ns � 12
have obvious small deviations apart from those of
Nj � Nm � 10 and Ns � 40, and the other result curves

almost coincide. Thus, the product quadrature rule of
Nj � Nm � 7 and Ns � 30 is employed here for the lat-
ter cases.
Fig. 6 shows the e�ects of o on the transient radia-

tive transfer within the isotropically scattering �a1 �
0:0� medium; the results of Mÿ10�0 ,0, t� and
M10�0, zo, t� are shown. We also plot the results

obtained by the RMCM in Fig. 6, to validate the QM
results. Here, each RMCM result is generated by using
500,000 bundles to keep the inherent random errors

far smaller than the absolute values of the RMCM sol-
utions. As shown in Fig. 6, the results obtained by the

QM and RMCM are in excellent agreement for a wide
range of o: Both Mÿ10�0, 0, t� and M10�0, zo, t� increase
with the increase of o at any time, and both of them

for a larger o have longer tails. For each case shown,
the Mÿ10�0, 0, t� curve ®nally merges with the corre-
sponding M10�0, zo, t� curve as cbt increases. This

phenomenon is very similar to that observed in the 1D
problem, and it reveals that the distribution of scat-
tered radiative energy ®nally becomes symmetrical

about the z � zo=2 plane. After we carefully examine
the distribution of M00, the symmetrical distribution is
con®rmed.
In Fig. 7, we plot the QM results of Mÿ10�0, 0, t� for

three optical sizes. The media are conservative and of
identical optical radius bro � 1:0, but of di�erent opti-
cal heights, bzo � 2:0, 1.0, and 0.5, respectively. For

comparison purpose, the re¯ectivity curve for a 1D
planar medium of bzo � 0:5 is also shown in Fig. 7.
The Mÿ10�0, 0, t� curves for the three 2D cases coincide

for small cbt, and the curves for the smaller bzo cases
are successively apart from those for the larger bzo

cases, as shown in Fig. 7. A similar trend for a 1D pla-

nar medium has been found and explained [16]. For a
1D planar medium, except the peak, only a single kink
results from the ®nite thickness of the medium, as
shown by the 1D re¯ectivity curve. However, except

the peak, two kinks are often observed for the 2D
problem, as exhibited by the curves of the bzo � 1:0
and 2.0 cases, although the second kink for the bzo �
2:0 case is not obvious. The ®nite radius of the med-
ium is responsible for the ®rst of them, while the ®nite
height causes the other. The occurrence instants for

Fig. 5. The dependence of the 2D QM results of Mÿ10�0, 0, t�
on the number of the quadrature points.

Fig. 4. The dependence of the 2D QM results of Mÿ10�0, 0, t�
on the number of the grid points.
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the two kinks are around cbtc � 2bzo and cbtc � bro,
respectively, provided that the width of pulse tp is far

smaller than zo=c and ro=c: In Fig. 7, the curve of the
bzo � 0:5 case, seems to have only one kink like that
of the 1D planar medium. This is because the ``two''

kinks happen nearly about the same time due to the
particular aspect ratio zo=ro � 0:5 for the bzo � 0:5
case.

Next, we consider the e�ects of a1 on Mÿ10�0, 0, t�
and M10�0, zo, t� for a 2D conservative medium of
bro � bzo � 1:0: The Mÿ10�0, 0, t� and M10�0, zo, t�
obtained by the QM for a1 � 1:0 and a1 � ÿ1:0 are

shown in Fig. 8. In addition, the isotropic scattering

results are also plotted in Fig. 8 for comparison. As
shown in Fig. 8, the ¯ux primarily due to the penetrat-

ing pulse, that is, the M10�0, zo, t� for small cbt, for the
forward-scattering dominating case is larger than that
for the backward-scattering dominating case. On the

other hand, the ¯uxes due to scattered radiation, that
is, the Mÿ10�0, 0, t� for all cbt and the M10�0, zo, t� for
large cbt, have larger values for the backward-scatter-

ing dominating case. Besides, the Mÿ10�0, 0, t� and the
M10�0, zo, t� curves for either of the anisotropic scatter-
ing cases eventually merge individually as cbt increases,
as shown in the isotropic scattering case. Thus, as the
time passes, the distributions of the scattered radiative
energy gradually become symmetrical about the central
plane z � zo=2, no matter whether the scattering is iso-

tropic or anisotropic.
In Fig. 9, we plot the spatial distributions of Mÿ10�r,

0, t� � IoF�t�H�t� ÿM10�r, 0, t�, M10�r,zo,t� and

M11�ro, z, t� at some instants of interest, respectively.
Both the QM and RMCM results are shown in Fig. 9.
The results by the two methods are in good agreement,

and only very small discrepancies are found in the
Mÿ10�r, 0, t� curves for the early instants and around
the peaks of the M11�ro, z, t� curves. The discrepancies

are primarily due to the RMCM random errors.
Besides, the non-smooth variations of the Mÿ10�r, 0, t�
curves near the lateral boundary and of the
M11�ro, z, t� curves around the peaks are caused by the

®nite grid points of the QM. They can be readily
smoothed by using a ®ner mesh.
In Fig. 9(a), the distributions of Mÿ10�r, 0, t� around

the center at the early time before the peak instant,
cbt � 1:0, are more uniform than those at an instant

Fig. 6. The results of Mÿ10�0, 0, t� and M10�0, zo, t� obtained
by the QM and RMCM for 2D ®nite cylindrical media with

various values of o:

Fig. 7. The QM results of Mÿ10�0, 0, t� for 2D ®nite cylindrical

conservative media of three optical sizes.

Fig. 8. The results of Mÿ10�0, 0, t� and M10�0, zo, t� obtained
by the QM and RMCM for 2D ®nite cylindrical conservative

media with various values of a1.
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after the peak instant, say cbt � 2:0: This is caused by
the smaller radiation penetrating distance in the z-

direction at the earlier time. With a smaller penetrating
distance, the e�ective aspect ratio of the medium
becomes smaller and the values of Mÿ10�r, 0, t� around
the center become closer to those of a 1D planar med-
ium. Besides, comparing the distributions of
Mÿ10�r, 0, t� at cbt � 1:0 and those of M10�r, zo, t� at
cbt � 2:0, we can ®nd that the spatial distributions of
the Mÿ10�r, 0, t� have larger changes near the lateral
boundary. The major contributor of the M10�r, zo, t� is
the attenuated collimated radiation, which directly
penetrates the medium without scattering, and the atte-
nuated collimated radiation is uniformly distributed on
any surface z = constant. On the other hand, the

Mÿ10�r, 0, t� completely results from scattered radiation.
Thus, the spatial distributions of the M10�r, zo, t� are
more uniform than those of the Mÿ10�r, 0, t�:
Fig. 9(c) shows that the locations of the peaks of the

radiative ¯ux through the lateral boundary vary with
the time. For the isotropically and anisotropically scat-

tering cases, at the early instant cbt � 1:0, the peaks
appear near the bottom surface z � 0, then the peaks
shift following the peak of the pulse irradiation along

the positive z-direction. At the late instant cbt � 4:0,
the maxima appear at the central location z � zo=2,
and the spatial distributions of the M11�ro, z, t� become
almost symmetrical about the maxima. This is a direct

result of the symmetrical distribution of the scattered
radiation energy remaining within the medium at large
time. From Figs. 8 and 9, we can ®nd that the tem-

poral distribution of the transient radiative transfer
strongly depends on the anisotropic scattering.
The CPU time required by the QM to solve one of

the isotropic scattering cases by using 21 � 21 spatial
grid points, 100 time steps, Nj � Nm � 10 and Ns � 40
is about 5100 s on a DEC Alpha 8400 computer. This
CPU time is about 1/550 of that required by the

RMCM to generate the same number of results by
employing 500,000 bundles. For an anisotropically
scattering case, the ratio of the required CPU times

becomes smaller.

5. Concluding remarks

The integral equation formulation for transient
radiative transfer in a 3D anisotropically scattering
medium is presented. The exempli®ed 1D and 2D ani-

sotropically scattering problems are solved by the QM

Fig. 9. The results at some instants of interest obtained by the

QM and RMCM for 2D ®nite cylindrical conservative media

with various values of a1; (a) the spatial distributions of

Mÿ10�r, 0, t�; (b) the spatial distributions of M10�r, zo, t�; (c) the
spatial distributions of M11�ro, z, t�:
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and Monte Carlo methods. With the comparisons of
the results for a variety of cases, it is found that the

solutions based on the exact integral equation formu-
lation are e�ective, and of high accuracy. The results
show that the e�ects of anisotropic scattering are

strong for the transient problems considered.
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